

BIOPLASTICS MATERIALS PORTFOLIO

11 Rue François Arago - 14123 Ifs - FRANCE • Tél :(+33)2 31 83 50 87 • Fax : (+33)2 31 84 70 98 • www.natureplast.eu SAS au capital de 174 666 € APE : 4690Z • SIRET : 493 442 891 00047 • TVA : FR 45 49 344 2891

RAW MATERIALS

Biodegradable range

- ✓ PLA: Poly(lactides)
- ✓ PHAs: Poly(hydroxy alcanoates)
- ✓ Biopolyesters

Biobased range

- ✓ Biobased PA
- ✓ Biobased Elastomers
- ✓ Cellulose Esters

BIOPLASTICS COMPOUNDS Ranges

- ✓ NP SOFT
- ✓ NP RIGID
- ✓ NP HIGH TEMPERATURE
- ✓ NP HIGH FLUIDITY
- ✓ NP LIFE TIME
- ✓ NP WATER SOLUBLE
- ✓ NP WATER TREATEMENT
- ✓ NP ACTIVE COMPONENT

FIBERS AND COPRODUCTS BIOCOMPOSITES Ranges

- ✓ Cereals: NPW CER
- ✓ Sea: NPW SEA
- ✓ Shells & Nuts: NPW SHE
- ✓ Fruits: NPW VEG
- ✓ Natural Fibers: NPW FIB
- ✓ Textiles: NPW TEX

Non-exhaustive list, contact us for more information.

The information this document contains are accurate and precise to our best knowledge at the moment of the publication. Before using these products, customers and users should imperatively verify the adequacy between the products' application and material used. NaturePlast Company will not be held responsible regarding the handling, use and treatment of these products.

RAW MATERIALS

PLA is a thermoplastic polyester produced using annually renewable biomass like corn, sugar beet, or sugarcane.

Depending on the geographical area of production, the resources used may be certified GMO free.

Applications

Process:

- Injection moulding and blowing
- Thermoforming
- Flat extrusion die or cast
- Extrusion of profiles

Markets:

- Rigid packaging: containers, trays, bottles
- Flexible packaging: film
- Regular consumption goods
- Non-woven or textile fibre

N Properties

- 100% biobased
- Biodegradable and industrially compostable
- **Rigid and brittle**
- Transparent
- Food safe

	GRADE	PROPERTIES	DENSITY	MFI (g/10 min; 190 °C/2,16 kg)	TENSILE MODULUS (MPa)	TENSILE ELONGATION (%)	CHARPY IMPACT unnotched (kJ/m²)	THERMAL RESISTANCE (°C; HDT B)
	ISO Method		1183	1133	527	527	179	75-2
	PLE 005	PLLA	1,25	7	3 500	5	23	51
Extrusion	PLE 005-A	Amorphous	1,24	3	3 500	5	23	51
	PLE 005-1	High viscosity	1,25	1	3 500	5	23	51
Injection	PLI 005	PLLA	1,25	25 – 35	3 500	4	22	53

11 Rue François Arago - 14123 lfs - France • Tél :(+33)2 31 83 50 87 • www.natureplast.eu

PHAs are thermoplastic polyesters produced using annually renewable biomass like maize or different sugars obtained from agricultural activities. In time, ongoing developments in industrialisation will allow producing these polymers from waste material or by-products from various industries.

Applications

Process:

- Primarily injection moulding
- Thermoforming

Markets:

- Horticulture / agriculture
- Rigid packaging: containers, pots, boxes
- Regular consumption goods
- Fishkeeping / fish farming

- **Properties**
 - 100% biobased
 - Biodegradable in different environments and industrially compostable
 - Rigid
 - Opaque
 - Food safe

GRADE	PROPERTIES	DENSITY	MFI (g/10 min; 190 °C/2,16 kg)	TENSILE MODULUS (MPa)	TENSILE ELONGATION (%)	CHARPY IMPACT unnotched (kJ/m²)	THERMAL RESISTANCE (°C; HDT B)				
ISO Method		1183	1133	527	527	179	75-2				
Injection											
PHI 001	Additivated	1,25	15	860	/	45	45				
PHI 002	Raw	1,25	15 - 30	4200	4	5	134				
Compounding											
PHI 003	Powder	1,24	15 - 30	4200	4	5	134				

NaturePlast

Biopolyesters are a range of biodegradable and compostable thermoplastic polyesters which can be partially produced using annually renewable biomass like sugarcane. They will be 100% biobased in a few years

Applications

Process:

- Extrusion: blown film, blowmolding, profiles
- Injection molding
- Thermoforming

Markets:

- Flexible packaging: film, bag manufacturing
- Rigid packaging: containers, pots, boxes
- Regular consumption goods
- Horticulture / agriculture: mulching film

Properties

- Up to 50% biobased
- Biodegradable in different environments and industrially compostable
- Flexible
- Translucent
- Food safe

GRADE	BIOBASED %	DENSITY	MFI (g/10 min; 190 °C/2,16 kg)	TENSILE MODULUS (MPa)	TENSILE ELONGATION (%)	CHARPY IMPACT unnotched (kJ/m²)	THERMAL RESISTANCE (°C; HDT B)				
ISO Method		1183	1133	527	527	179	75-2				
Extrusion											
PBE 001	35%	1,24	5	290	>590	No Break	/				
PBE 003	50%	1,26	5	720	330	No Break	90 (HDT B)				
PBE 006	0%	1,26	4-6	85	>590	No Break	80 (Vicat A)				
PBE 111	0%	1,26	1,5	660	700	No Break	97 (HDT B)				
Injection											
PBI 003	50%	1,26	20	730	330	No Break	83 (HDT B)				

Biobased PAs are a range of Polyamides produced using annually renewable biomass like vegetable oils. These materials have excellent mechanical and chemical resistance.

Applications

Process:

- Primarily injection moulding
- Extrusion

Markets:

- Technical parts
- Regular consumption goods
- Transport
- Sports and leisure

- Up to 100% biobased
- Non biodegradable
- Flexible to rigid
- Translucent to opaque
- Food safe

Properties

	GRADE	BIOBASED CARBON %	DENSITY	VISCOSITY INDEX (cm ³ /g)	TENSILE MODULUS (MPa)	ELONGATION AT BREAK (%)	CHARPY IMPACT unnotched (kJ/m ²)	THERMAL RESISTANCE (°C)
	ISO Method	ASTM D 6866	1183	307	527	527	179	75-2 ou 306
	NP BioPA610-201	63	1,06	160	2100	>50	No Break	196 (Vicat B)
Injection	NP BioPA1010-201	100	1,05	160	1700	>50	No Break	171 (Vicat B)
Injeo	NP BioPA11-251	100	1,03	/	1280	>200	No Break	/
	NP BioPA11-252	50	1,01	/	1622	>140	No Break	135 (HDT B)

11 Rue François Arago - 14123 lfs - France • Tél :(+33)2 31 83 50 87 • www.natureplast.eu

SIRET : 493 442 891 00047 • TVA : FR 45 49 344 2891

Biobased Elastomers

🔪 General properties

Biobased elastomers are a range of biodegradable thermoplastic resins partially produced using annually renewable biomass. This range consists of materials like **BioTPU** and **BioTPE**.

Applications

Process:

• Primarly injection moulding

Markets:

- Sports and leisure
- Transports
- Regular consumption goods

Properties

- Up to 80% biobased
- Some of them are biodegradables through industrial composting
- Highly flexible
- Abrasion resistance
- Some of them are fit for food contact

GRADE	NATURE	BIOBASED	BIODEGRADABLE	FOOD CONTACT	HARDNESS	TRANSPARENCY
Injection						
NP EL 209 range	TPE	20 to 75 %	No	Possible	50 Sh A to 55 Sh D	Translucent
NP EL 210 range	TPU	32 to 42 %	No	Possible	82 to 95 Sh A	Yes
NP EL 211 range	TPU	40 to 60 %	No	No	67 to 84 Sh A	Yes

Cellulose esters are thermoplastic resins partially produced using biomass like wood.

GRADE	PROPERTIES	DENSITY	PLASTICIZER CONTENT (%)	FLEXURAL MODULUS (MPa)	ELONGATION AT BREAK (%)	IZOD notched IMPACT (kJ/m²)	THERMAL RESISTANCE (°C ; HDT A)
ASTM Method		D792					
Injection							
ACI 002	Cellulose acetate	1,27	29	1931	30	203	68

BIOPLASTICS COMPOUNDS

Below are examples of compounds that we have developed These compounds can be modified to better meet your specifications These compounds are produced on demand if not available in stock

The NP Soft range consists of a set of biobased and biodegradable polyesterbased compounds. They present improved flexibility and elongation at break properties.

Applications

Process:

- Blow film extrusion
- Injection

Markets:

- Primary and secondary flexible packaging
- Regular consumption goods
- Sports and leisure

Properties

- Partially biobased
- Biodegradable and compostable
- Food safe
- Flexible
- Translucent depending on the product

GRADE	MATRIX	BIOBASED CONTENT (%)	MFI (g/10 min; 190 °C/2,16 kg)	TENSILE MODULUS (MPa)	FLEXURAL MODULUS (MPa)	TENSILE ELONGATION AT BREAK (%)	CHARPY IMPACT unnotched (kJ/m²)				
Test ISO		Calculation	1133	527	178	527	179				
Extrusion											
NP SF 141	PLA	>85	/	1200	690	420	110				
Injection	Injection										
NP SF 231	Biopolyester	>25	35,8	195	167	>600	No Break				
NP SF 232	Biopolyester	58	6,3	1600	1500	60	163				
NP SF 241	PLA	50	11,4	1565	/	80	No Break				
NP SF 244	PLA	100	32	3200	3000	6	45				
NP SF 245	PLA	100	24	2600	2550	8,6	138				
NP SF 246	PLA	100	17	1800	1700	26	No Break				

NaturePlast

NP RIGID Range

対 General properties

The **NP Rigid** range consists of a set of **biobased and biodegradable polyester-based compounds**.

They present improved rigidity properties.

Several other versions are available depending on the performance levels to be attained, please contact us for more information

Applications

Process:

Primarily injection moulding

Markets :

- Primary and secondary rigid packaging
- Technical parts
- Sports and leisur

Properties

- Partially to completely biobased
- Biodegradable and compostable
- Food safe
- Rigid
- Translucent depending on the product

GRADE	MATRIX	MFI (g/10 min; 190 °C/2,16 kg)	TENSILE MODULUS (MPa)	FLEXURAL MODULUS (MPa)	ELONGATION AT BREAK (%)	CHARPY IMPACT unnotched (kJ/m²)
ISO Method		1133	527	178	527	179
Injection						
NP RG 241	PLA	9	5483	4902	3,2	14,2
NP RG 251	РНА	44	5371	/	2,4	7

NP HIGH TEMPERATURE RANGE

🔪 General properties

The **NP High Temperature** range consists of a set of PLA based compounds. These compounds were specifically developed to improve the thermal resistance of PLA.

Process:

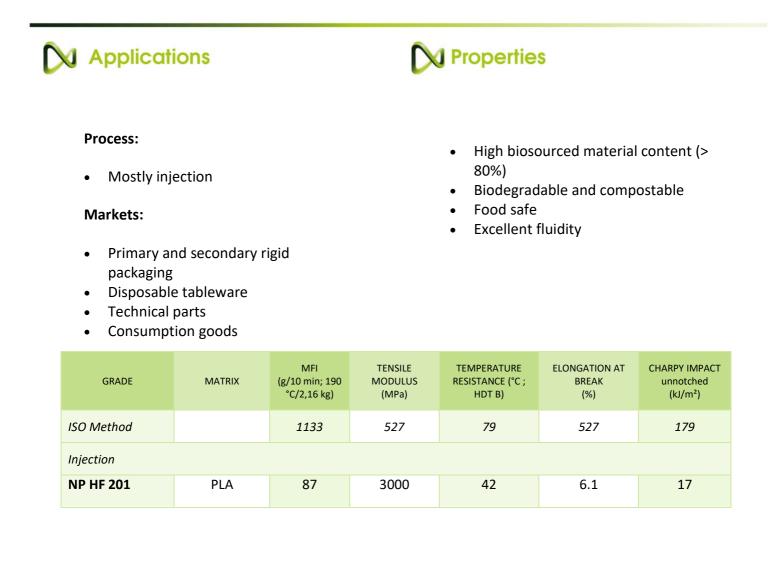
- Extrusion
- Injection

Markets:

- Primary and secondary rigid packaging
- Disposable tableware
- Technical parts
- Consumption goods

Properties

- High biosourced material content (> 80%)
- Biodegradable and compostable
- Food safe
- Excellent temperature behaviour


GRADE	MATRIX	MFI (g/10 min; 190 °C/2,16 kg)	TENSILE MODULUS (MPa)	TEMPERATURE RESISTANCE (°C ; HDT B)	ELONGATION AT BREAK (%)	CHARPY IMPACT unnotched (kJ/m²)
ISO Method		1133	527	79	527	179
Extrusion						
NP HT 101	PLA	5	3498	130	13,7	33,5
Injection						
NP HT 201	PLA	50 - 60	3600	127	17,2	85
NP HT 202	PLA	40	2400	118	31,8	121
NP HT 203	PLA	20	3600	127	17,2	85

NP HIGH FLUIDITY RANGE

General properties

The **NP High Fluidity** range consists of a set of Biopolyesters based compounds. These compounds were specifically developed to improve the fluidity of biopolyesters.

NP LIFE TIME Range

🔪 General properties

The **NP Life Time** range consists of a set of biobased and biodegradable polyester-based compounds. The products in this range were specifically designed to accelerate or reduce the rate of biodegradation of the products.

Applications

Process:

Primarily injection

Markets:

- Agriculture / horticulture
- Consumption goods

Properties

- Partially to completely biosourced
- Biodegradable and compostable
- Accelerated or slowed degradation depending on the product

GRADE	MATRIX	PROPERTIES	TENSILE MODULUS (MPa)	FLEXURAL MODULUS (MPa)	ELONGATION AT BREAK (%)	CHARPY IMPACT unnotched (kJ/m²)
ISO Method			527	178	527	179
Injection						
NP LT 241	PLA	Slowed degradation	3937	/	5,4	23,1
NP LT 251	РНА	Accelerated degradation	2931	2335	3	7,1

NP WATER SOLUBLE

Range

🔀 General properties

The **NP Water Soluble** range consists of a set of biobased and biodegradable polyester-based compounds. The products in this range were specifically designed to ensure solubility or quick biodegradability in an aqueous environment.

Applications

Process:

- Extrusion
- Injection

Markets:

- Agriculture / horticulture
- Consumption goods

- **Properties**
 - Partially biobased
 - Biodegradable and compostable
 - Accelerated degradation in aqueous environmen

GRADE	MATRIX	MFI (g/10 min; 190°C / 2,16 kg)	TENSILE MODULUS (MPa)	ELONGATION AT BREAK (%)	STRENGTH AT BREAK (MPa)					
ISO Method		1133	527	527	527					
Extrusion	Extrusion									
NP WS 131	Biopolyester	0,8	1255	7,5	36,7					
Injection	Injection									
NP WS 231	Biopolyester	9,1	517	50	23,7					

NP WATER TREATEMENT

Range

対 General properties

The **NP Water Treatement** range consists of a set of polymer-based compounds which are biodegradable in an aqueous environment. These products allow regulating the quality of water, and may also constitute a source of nutrition in aqueous environments.

Applications

Process:

- Extrusion
- Injection

Markets:

 Consumption goods in aqueous environment

- Biobased
- Biodegradable and compostable

This range has no standard reference, each development being carried out according to the specifications submitted. Please contact us for any inquiries on this subject.

NP ACTIVE COMPONENT Range

刘 General properties

The **NP Active Component** range consists of a set of polymer-based compounds of standard or biodegradable plastic type. These compounds integrate the active components which provide new functionalities to the finished product: attractant, repellent, or nutritive properties, etc.

Applications

Process:

- Extrusion
- Injection

Markets:

- Consumption goods
- Agriculture / horticulture

Properties

- Biosourced depending on product
- Biodegradable and compostable depending on the product
- Salting-out the active elements during use or biodegradation

This range has no standard reference, each development being carried out according to the specifications submitted. Please contact us for any inquiries on this subject.

FIBRE AND BY-PRODUCT BIOCOMPOSITES

Below are examples of compounds that we have developed These compounds can be modified to better meet your specifications These compounds are produced on demand if not available in stock

The **NPW CER** range consists of a set of Biocomposites which can be produced from oilbased as well as biobased or biodegradable polymers. The by-products used here as fillers are waste material from cereal processing activities.

Applications

Process:

- Primarily injection moulding
- Adaptable to other processes

Markets:

- Rigid secondary packaging
- Regular consumption goods
- Technical parts
- Agriculture / horticulture
- Cosmetic / luxury

- Partially to totally biobased
- Some of them are biodegradable and compostable
- Rigid

N Properties

Natural appearance

GRADE	MATRIX	FILLER	FILLING RATE (%)	MFI (g/10 min ; 190°C/2,16 kg)	TENSILE MODULUS (MPa)	ELONGATION AT BREAK (%)	CHARPY IMPACT unnotched (kJ/m²)				
ISO Method				1133	527	527	179				
Injection	Injection										
NPW CER 210	РР	Wheat	20	2,8	1550	8,7	19,8				
NPW CER 220	Biobased PE	Wheat	15	/	1300	20,4	19,2				
NPW CER 221	Biobased PE	Wheat	30	/	1430	15,5	12,8				
NPW CER 230	Biopolyester	Wheat	15	7,1	1000	11,9	22,3				
NPW CER 231	Biopolyester	Wheat	30	21	1300	6,6	10				

The NPW SEA range consists of a set of Biocomposites which can be produced from oilbased as well as biobased or biodegradable polymers. The by-products used here as fillers are waste material from seashell.

Applications Process:

- Primarily injection moulding
- Adaptable to other processes

Markets:

- Rigid secondary packaging
- Regular consumption goods
- Technical parts
- Agriculture / horticulture
- Cosmetic / luxury

Properties

- Partially to totally biobased
- Some of them are biodegradable and compostable
- Rigid
- Natural appearance

GRADE	MATRIX	FILLER	FILLING RATE (%)	MFI (g/10 min ; 190°C/2,16 kg)	TENSILE MODULUS (MPa)	ELONGATION AT BREAK (%)	CHARPY IMPACT unnotched (kJ/m²)		
ISO Method				1133	527	527	179		
Injection									
NPW SEA 210	РР	Oyster	30	-	3140	7,1	14		
NPW SEA 211	РР	Fine oyster	30	-	1400	11,4	19		
NPW SEA 212	РР	Scallop	30	-	1550	9,6	7,6		
NPW SEA 213	РР	Scallop	20	8	1400	21	23,1		
NPW SEA 214	РР	Algae	30	9	2250	5,7	12,8		
NPW SEA 220	BioPE	Algae	30	6	1 760	11.3	15		
NPW SEA 230	Biopolyester	Oyster	30	27	1690	7,9	32		
NPW SEA 231	Biopolyester	Algae	30	17	1 340	7,9	25.1		
NPW SEA 240	PLA	Algae	20	26	5 540	3.4	7.3		
NaturePlast									

L'expert en Bioplastiques

The **NPW SHE** range consists of a set of Biocomposites which can be produced from oilbased as well as biobased or biodegradable polymers. The by-products used here as fillers are waste material from shells or kernels from different sources.

Applications

Process:

- Primarily injection moulding
- Adaptable to other processes

Markets:

- Rigid secondary packaging
- Regular consumption goods
- Technical parts
- Agriculture / horticulture
- Cosmetic / luxury

- Partially to totally biobased
- Some of them are biodegradable and compostable
- Rigid

N Properties

• Natural appearance

GRADE	MATRIX	FILLER	FILLING RATE (%)	MFI (g/10 min ; 190°C/2,16 kg)	TENSILE MODULUS (MPa)	ELONGATION AT BREAK (%)	CHARPY IMPACT unnotched (kJ/m²)		
ISO Method				1133	527	527	179		
Injection									
NPW SHE 220	Biobased PE	Hazelnut shel	30	14,3	2770	6,7	7		
NPW SHE 230	Biopolyester	Olive stone	20	23,1	1270	11,3	18,5		
NPW SHE 231	Biopolyester	Rice husk	30	17,3	1670	5	12,7		
NPW SHE 232	Biopolyester	Almond shells	30	23,6	1380	4,5	8,4		

NPW VEG Range

🔪 General properties

The **NPW VEG** range consists of a set of Biocomposites which can be produced from oilbased as well as biobased or biodegradable polymers. The by-products used here as fillers are waste material from agro-food industries (fruit and vegetables).

Applications

Process:

- Primarily injection moulding
- Adaptable to other processes

Markets:

- Rigid secondary packaging
- Regular consumption goods
- Technical parts
- Agriculture / horticulture
- Cosmetic / luxury

N Properties

- Partially to totally biobased
- Some of them are biodegradable and compostable
- Rigid
- Natural appearance

GRADE	MATRIX	FILLER	FILLING RATE (%)	MFI (g/10 min ; 190°C/2,16 kg)	TENSILE MODULUS (MPa)	ELONGATION AT BREAK (%)	CHARPY IMPACT unnotched (kJ/m²)		
ISO Method				1133	527	527	179		
Injection									
NPW VEG 220	Biobased PE	Cocoa shell	30	9,8	1360	5,4	8,2		
NPW VEG 221	Biobased PE	Coffee grounds	30	5,4	1260	10,8	11,3		
NPW VEG 222	Biobased PE	Apple pomace	15	5,5	1460	13,3	19,6		
NPW VEG 223	Biobased PE	Grape seeds	30	13,2	960	9,7	10,4		

The **NPW FIB** range consists of a set of Biocomposites which can be produced from oilbased as well as biobased or biodegradable polymers. The by-products used here as fillers are natural fibres obtained from various sectors.

Applications

Process:

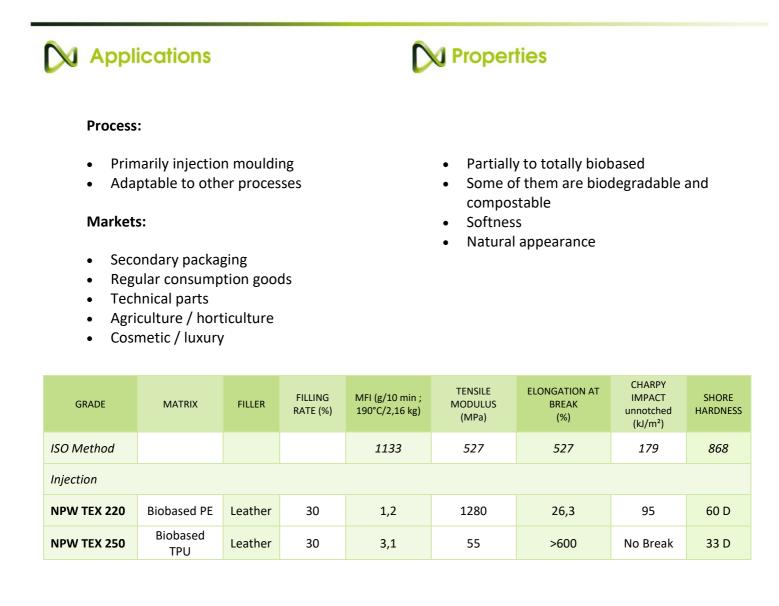
- Primarily injection moulding
- Adaptable to other processes

Markets:

- Rigid secondary packaging
- Regular consumption goods
- Technical parts
- Agriculture / horticulture
- Cosmetic / luxury

Properties

- Partially to totally biobased
- Some of them are biodegradable and compostable
- Rigid
- Natural appearance


GRADE	MATRIX	FILLER	FILLING RATE (%)	MFI (g/10 min ; 190°C/2,16 kg)	TENSILE MODULUS (MPa)	ELONGATION AT BREAK (%)	CHARPY IMPACT unnotched (kJ/m²)			
ISO Method				1133	527	527	179			
Injection	Injection									
NPW FIB 220	Biobased PE	Miscanthus	30	2,3	3340	5,1	8,4			
NPW FIB 221	Biobased PE	Flax	30	2,7	2420	7	11,6			
NPW FIB 222	Biobased PE	Hemp	30	0,2	2780	5,6	11,6			
NPW FIB 230	Biopolyester	Wood	10	33	1250	8,6	23,7			
NPW FIB 231	Biopolyester	Miscanthus	30	15	1519	7,5	20,2			
NPW FIB 232	Biopolyester	Cork	20	1	60	10,6	16,3			
NPW FIB 240	PLA	Cork	20	1	2400	2,7	6,4			

Gamme NPW TEX

刘 General properties

The **NPW TEX** range consists of a set of Biocomposites which can be produced from oilbased as well as biobased or biodegradable polymers. The by-products used here as fillers are waste material from textile industries.

